Non-Structural Nuclear Genes for Mitochondrial Disease
Last update: January 2018
Complex
|
Name
|
OMIM
|
Function
|
Chromosome
|
Inheritance
|
Clinical Phenotype
|
References
|
| | | | | | | |
| | | | | | | |
Assembly | | | | | | | |
Complex I |
NDUFAF1(CIA30)
|
606934
|
Assembly
|
15q13.3
|
AR
|
Cardioencephalomyopathy
|
[i]
|
|
NDUFAF2 (B17.2L)
|
609653
|
Assembly
|
5q12.1
|
AR
|
Early onset progressive encephalopathy
|
[ii]
|
|
NDUFAF3
|
612911
|
Assembly
|
3p21.31
|
AR
|
Neonatal encephalopathy
|
[iii]
|
|
NDUFAF4 (HRPAP2)
|
611776
|
Assembly
|
6q16.1
|
AR
|
Infantile encephalopathy
|
[iv]
|
| NDUFAF5 (C20orf7) |
612360
|
Assembly
|
20p12.1
|
AR
|
LS
|
[v]
|
|
NDUFAF6
|
612392
|
Assembly
|
8q22.1
|
AR
|
LS
|
[vi]
|
|
NUBPL
|
613621
|
Assembly
|
14q12
|
AR
|
Encephalomyopathy
|
[vii]
|
|
FOXRED1
|
613622
|
Assembly
|
11q24.2
|
AR
|
LS
|
[viii]
|
|
ACAD9
|
611103
|
Assembly and activity
|
3q26
|
AR
|
Hypertrophic cardiopathy encephalopathy
|
[ix]
|
Complex II |
SDHAF1
|
612848
|
Assembly
|
19q12-q13.2
|
AR
|
Leukoencephalopathy
|
[x]
|
|
SDHAF2
|
613019
|
Assembly
|
11q12.2
|
AD
|
Autosomal dominant paraganglioma type 2
|
[xi]
|
Complex III |
BCS1L
|
603647
|
Assembly
|
2q33
|
AR
|
Encephalopathy, hepatic failure and tubulopathy, LS, GRACILE syndrome, Bjornstad Syndrome
|
[xii]
|
|
UQCC2
|
614461
|
Assembly
|
6p21.31
|
AR
|
lactic acidosis and renal tubular dysfunction
|
[xiii]
|
|
UQCC3
|
616097
|
Assembly
|
11q12.3
|
AR
|
lactic acidosis, hypoglycemia, hypotonia
|
[xiv]
|
Complex IV |
SURF1
|
185620
|
Assembly
|
9q34
|
AR
|
LS
|
[xv]
|
|
SCO1
|
603644
|
Copper transport
|
17p13-p12
|
AR
|
Neonatal hepatic failure and encephalopathy
|
[xvi]
|
|
SCO2
|
604272
|
Copper transport
|
22q13
|
AR
|
Neonatal Cardioencephalomyopathy
|
[xvii]
|
|
COX10
|
602125
|
Heme A farnesyltransferase
|
17p12-p11.2
|
AR
|
Neonatal tubulopathy and encephalopathy, LS, cardiomyopathy
|
[xviii]
|
|
COX14 (C12orf62)
|
614478
|
COX assembly
|
12q13.12
|
AR
|
Neonatal lactic acidosis
|
[xix]
|
|
COX15
|
603646
|
Heme A synthesis
|
10q24
|
AR
|
Early-onset hypertrophic cardiomyopathy, LS
|
[xx]
|
|
COX20
|
614698
|
Assembly
|
1q44
|
AR
|
Ataxia, muscle hypotonia
|
[xxi]
|
|
COA3
|
614775
|
Assembly
|
17q21.2
|
AR
|
Neuropathy, exercise intolerance
|
[xxii]
|
|
COA5
|
613920
|
Assembly
|
2q11.2
|
AR
|
Cardioencephalomyopathy
|
[xxiii]
|
|
COA6
|
614772
|
Assembly
|
1q42.2
|
AR
|
Cardioencephalomyopathy
|
[xxiv]
|
|
LRPPRC
|
220111 607544
|
Assembly
|
2p21-p16
|
AR
|
French-Canadian LS
|
[xxv]
|
|
FASTKD2
|
612322
|
Role in apoptosis
|
2q33.3
|
AR
|
Encephalomyopathy
|
[xxvi]
|
|
TACO1
|
612958
|
translational activator of COX1
|
17q22-q24.2
|
AR
|
LS
|
[xxvii]
|
Complex V |
ATPAF2
|
608918
|
Assembly
|
17p11.2
|
AR
|
Early-onset encephalopathy, Lactic acidosis
|
[xxviii]
|
|
TMEM70
|
604273 612418
|
Assembly
|
8q21.11
|
AR
|
Neonatal encephalopathy, cardiomyopathy
|
[xxix]
|
| | | | | | | |
| | | | | | | |
MtDNA Maintenance
|
POLG (PEOA1)
|
174763
|
Polymerase gamma mtDNA replication
|
15q25
|
AD-AR
|
Alpers syndrome, AD-PEO and AR-PEO, male infertility, SANDO* syndrome, SCAE*
|
[xxx]
|
|
POLG2 (PEOA4)
|
610131
|
catalytic subunit of DNA polymerase gamma
|
17q23-q24
|
AD
|
AD-PEO
|
[xxxi]
|
|
ANT1 (PEOA2)
|
609283
|
Adenine nucleotide translocator isoform 1
|
4q35
|
AD-AR
|
AD-PEO, multiple mtDNA deletions
|
[xxxii]
|
|
MPV17
|
137960
|
regulation of mtDNA copy number
|
2p23-p21
|
AR
|
Hepatocerebral MDDS
|
[xxxiii]
|
|
OPA1
|
165500
|
Dynamin-related protein
|
3q28-q29
|
AD
|
AD-Optic Atrophy, Multiple deletions
|
[xxxiv]
|
|
MFN2
|
609260
|
Mitofusin Mitochondrial fusion
|
1p36-p35
|
AD
|
Charcot-Marie-Tooth disease-2A2 (CMT2A2) Multiple deletions
|
[xxxv]
|
|
C10ORF (PEOA3)
|
609286
|
Twinkle helicase
|
10q24
|
AD
|
AD-PEO, SANDO syndrome
|
[xxxvi]
|
|
TYMP (ECGF1)
|
603041
|
Thymidine phosphorylase
|
22q13.32-qter
|
AR
|
MNGIE, mtDNA depletion
|
[xxxvii]
|
|
DGUOK
|
601465
|
Deoxyguanosine kinase Mitochondrial dNTP pool maintenance
|
2p13
|
AR
|
Hepatocerebral mtDNA depletion syndrome
|
[xxxviii]
|
|
RRM2B (PEOA5)
|
604712
|
ribonucleotide reductase M2 B dNTP pool
|
8q23.1
|
AR
|
Encephalomyopathic Renal tubulopathy MNGIE, AD-PEO
|
[xxxix]
|
|
SUCLA2
|
603921
|
succinate-CoA ligase, ADP-forming, beta subunit
|
13q12.2-q13
|
AR
|
Encephalomyopathy with methylmalonic aciduria
|
[xl]
|
|
SUCLG1
|
611224
|
succinate-CoA ligase, alpha subunit
|
2p11.2
|
AR
|
Encephalomyopathy with methylmalonic aciduria
|
[xli]
|
|
TK2
|
188250
|
Thymidine kinase Mitochondrial dNTP pool maintenance
|
16q22
|
AR
|
Myopathic mtDNA depletion
|
[xlii]
|
|
TFAM
|
600438
|
mitochondrial transcription factor A
|
10q21.1
|
AR
|
Encephalomyopathy mtDNA depletion
|
[xliii]
|
|
FBXL4
|
605654
|
mtDNA maintenance
|
6q16.1-q16.2
|
AR
|
Encephalomyopathy and myopathy mtDNA depletion
|
[xliv]
|
|
MGME1
|
615084
|
mtDNA maintenance
|
20p11.23
|
AR
|
CPEO and Myopathy mtDNA depletion
|
[xlv]
|
| | | | | | | |
| | | | | | | |
Mitochondrial Import
|
DDP
|
304700
|
Protein import
|
Xq22
|
X-linked
|
Deafness-dystonia or Mohr-Tranebjaerg syndrome
|
[xlvi]
|
|
DNAJC19
|
608977
|
Protein import
|
3q26.3
|
AR
|
Cardiomyopathy, ataxia
|
[xlvii]
|
| | | | | | | |
| | | | | | | |
Mitochondrial Protein Synthesis
|
AARS2
|
612035
|
Alanyl-tRNA synthetase
|
6p21.1
|
AR
|
Cardiomyopathy; Leukoencephalopathy
|
[xlviii]
|
|
CARS2
|
612800
|
Cysteinyl-tRNA synthetase
|
13q34
|
AR
|
Myoclonic epilepsy
|
[xlix]
|
|
DARS2
|
611105
|
aspartyl-tRNA synthetase
|
1q25.1
|
AR
|
Leukoencephalopathy and lactic acidosis
|
[l]
|
|
EARS2
|
612799
|
Glutamyl tRNA synthetase
|
16p12.2
|
AR
|
Leukoencephalopathy
|
[li]
|
|
FARS2
|
611592
|
Phenylalanyl-tRNA synthetase
|
6p25.1
|
AR
|
Alpers syndrome, spastic paraplegia
|
[lii]
|
|
GARS
|
600287
|
glycyl-tRNA synthetase
|
7p14.3
|
AD
|
Charcot-Marie-Tooth disease
|
[liii]
|
|
HARS2
|
600783
|
Histidyl-tRNA synthetase
|
5q31.3
|
AR
|
Perrault syndrome
|
[liv]
|
|
IARS2
|
612801
|
Isoleucyl tRNA-Synthetase
|
1q41
|
AR
|
Cataract, deafness, neuropathy / Leigh Syndrome
|
[lv]
|
|
KARS
|
601421
|
Lysyl-tRNA synthetase
|
16q23.1
|
AR
|
CMT disease/ Deafness
|
[lvi]
|
|
LARS
|
615438
|
Leucine-tRNA synthetase
|
5q32
|
AR
|
Hepatopathy
|
[lvii]
|
|
LARS2
|
604544
|
Leucyl-tRNA Synthetase
|
3p21.31
|
AR
|
Perrault Syndrome
|
[lviii]
|
|
NARS2
|
612803
|
Asparaginyl-tRNA synthetase
|
11q14.1
|
AR
|
Alpers syndrome / Nonsyndromic Deafness and Leigh Syndrome
|
[lix]
|
|
PARS2
|
612036
|
Prolyl- tRNA Synthetase
|
1p32.3
|
AR
|
Alpers syndrome
|
[lx]
|
|
RARS2
|
611523
|
arginyl-tRNA synthetase
|
6q16.1
|
AR
|
Pontocerebellar hypoplasia
|
[lxi]
|
|
SARS2
|
612804
|
seryl-tRNA synthetase
|
19q13.2
|
AR
|
Hyperuricemia, pulmonary hypertension, renal failure
|
[lxii]
|
|
TARS2
|
612805
|
Threonyl--tRNA synthetase
|
1q21.2
|
AR
|
Encephalomyopathy
|
[lxiii]
|
|
VARS2
|
612802
|
valyl-tRNA synthetase
|
6p21.33
|
AR
|
Encephalomyopathy
|
[lxiv]
|
|
YARS2
|
610957
|
tyrosyl-tRNA synthetase
|
12p11.21
|
AR
|
Myopathy, lactic acidosis, and sideroblastic anemia-2
|
[lxv]
|
|
EFG1
|
609060
|
Elongation factor G1 mitochondrial translation defect
|
3q25
|
AR
|
Severe hepatoencephalopathy and lactic acidosis
|
[lxvi]
|
|
TSFM
|
604723
|
Mitochondrial translation elongation
|
12q13-q14
|
AR
|
Encephalomyopathy, hypertrophic cardiomyopathy
|
[lxvii]
|
|
TUFM
|
602389
|
Mitochondrial translation elongation
|
16p11.2
|
AR
|
Leukodystrophy with micropolygyria
|
[lxviii]
|
|
GTPBP3
|
608536
| GTP-binding protein |
19p13.11
|
AR
|
Cardiomyopathy, encephalopathy
|
[lxix]
|
|
MTFMT
|
611766
|
Mitochondrial translation
|
15q22.31
|
AR
|
LS
|
[lxx]
|
|
MTO1
|
614667
|
tRNA modification
|
6q13
|
AR
|
Cardiomyopathy
|
[lxxi]
|
|
TRMT5
|
611023
|
mitochondrial tRNA methylation
|
14q23.1
|
AR
|
Cardiomyopathy/exercise intolerance
|
[lxxii]
|
|
TRMT10C
|
615423
|
TRNA Methyltransferase
|
3q12.3
|
AR
|
Hypotonia, feeding difficulties, deafness
|
[lxxiii]
|
|
TRMU
|
610230
|
mitochondrial translation
|
22q13.31
|
AR
|
Liver failure, deafness
|
[lxxiv]
|
|
GFM1
|
606639
|
Mitochondrial translationelongation
|
3q25.32
|
AR
|
Encephalopathy/hepatic failure
|
[lxxv]
|
|
GFM2
|
606544
|
Mitochondrial translation elongation
|
5q13.3
|
AR
|
Neurodevelopmental disorder, dysmorphic features
|
[lxxvi]
|
|
C12orf65
|
613541
|
Mitochondrial translation
|
12q24.31
|
AR
|
Encephalomyopathy, Optic atrophy, axonal neuropathy, paraparesis
|
[lxxvii]
|
|
RMND1
|
614917
|
Mitochondrial translation
|
6q25.1
|
AR
|
Encephalopathy
|
[lxxviii]
|
|
MRPL3
|
607118
|
Mitochondrial translation
|
3q22.1
|
AR
|
Cardiomyopathy, mental retardation
|
[lxxix]
|
|
MRPS7
|
611974
|
Mitochondrial translation
|
17q25.1
|
AR
|
Deafness, hepatic and renal failure
|
[lxxx]
|
|
MRPL12
|
602375
|
Mitochondrial translation
|
17q25.3
|
AR
|
Growth retardation, encephalopathy
|
[lxxxi]
|
|
MRPS16
|
609204
|
Mitochondrial translation
|
10q22.1
|
AR
|
Neonatal lactic acidosis corpus callosum agenesis
|
[lxxxii]
|
|
MRPS22
|
605810
|
Mitochondrial translation
|
3q23
|
AR
|
Cardiomyopathy, tubulopathy
|
[lxxxiii]
|
|
MRPL44
|
611849
|
Mitochondrial translation
|
2q36.1
|
AR
|
Cardiomyopathy
|
[lxxxiv]
|
| | | | | | | |
| | | | | | | |
Iron Homeostasis
|
FRDA (FXN)
|
606829
|
Frataxin Trinuc.* Repeat,
|
9q13
|
AR
|
Friedreich ataxia, neuropathy, cardiomyopathy, diabetes
|
[lxxxv]
|
|
ABCB7
|
301310
|
Iron transport
|
Xq13.1-q13.3
|
X-linked
|
X-linked sideroblastic anemia with ataxia
|
[lxxxvi]
|
|
GLRX5
|
205950
|
Iron-sulfur cluster biosynthesis
|
3p22.1
|
AR
|
Sideroblastic anemia
|
[lxxxvii]
|
|
ISCU
|
255125
|
Iron-sulfur cluster biosynthesis
|
12q23.3
|
AR
|
Myopathy, lactic acidosis, exercise intolerance
|
[lxxxviii]
|
|
BOLA3
|
613183
|
Iron-sulfur cluster biosynthesis
|
2p13.1
|
AR
|
Encephalomyopathy,
cardiomyopathy
|
[lxxxix]
|
|
NFU1
|
608100
|
Iron-sulfur cluster biosynthesis
|
2p13.3
|
AR
|
Lactic acidosis
multiple respiratory chain deficiency
|
[xc]
|
|
ISCA2
|
615317
|
Iron-sulfur cluster biosynthesis
|
14q24.3
|
AR
|
Leukodystrophy
|
[xci]
|
|
IBA57
|
615316
|
Iron-sulfur cluster biosynthesis
|
1q42.13
|
AR
|
Myopathy, encephalopathy
|
[xcii]
|
|
LYRM4
|
613311
|
Iron-sulfur cluster biosynthesis
|
6p25.1
|
AR
|
Lactic acidosis, Failure to thrive
|
[xciii]
|
|
LYRM7
|
615831
|
Iron-sulfur cluster biosynthesis
|
5q23.3-q31.1
|
AR
|
Encephalopathy, lactic acidosis
|
[xciv]
|
|
FDXL1
|
614585
|
Iron-sulfur cluster biosynthesis
|
19p13.2
|
AR
|
Myopathy, lactic acidosis
|
[xcv]
|
| | | | | | | |
| | | | | | | |
Coenzyme Q10 biogenesis
|
COQ2
|
609825
|
CoQ10 deficiency
|
4q21-q22
|
AR
|
Encephalomyopathy, nephropathy
|
[xcvi]
|
|
COQ4
|
612898
|
CoQ10 deficiency
|
9q34.13
|
AR
|
Encephalomyopathy, mental retardation
|
[xcvii]
|
|
COQ5
|
616359
|
CoQ10 deficiency
|
12q24.31
|
AR
|
Encephalomyopathy, cerebellar ataxia
|
[xcviii]
|
|
COQ6
|
614647
|
CoQ10 deficiency
|
14q24.3
|
AR
|
Nephrotic syndrome, deafness
|
[xcix]
|
|
COQ7
|
601683
|
CoQ10 deficiency
|
16p12.3
|
AR
|
Hypotonia, cardiac hypertrophy
|
[c]
|
|
COQ9
|
612837
|
CoQ10 deficiency
|
16q13
|
AR
|
Neonatal lactic acidosis Seizures, cardiomyopathy
|
[ci]
|
|
APTX
|
606350
|
CoQ10 deficiency
|
9p13.3
|
AR
|
Cerebellar ataxia Oculomotor apraxia
|
[cii]
|
|
PDSS1
|
607429
|
CoQ10 deficiency
|
10p12.1
|
AR
|
Deafness, valvulopathy, mental retardation
|
[ciii]
|
|
PDSS2
|
610564
|
CoQ10 deficiency
|
6q21
|
AR
|
LS, nephrotic syndrome
|
[civ]
|
|
CABC1
|
606980
|
CoQ10 deficiency
|
1q42.2
|
AR
|
Cerebellar ataxia, lactic acidosis
|
[cv]
|
| | | | | | | |
| | | | | | | |
Chaperone Function
|
SPG7
|
607259
|
Paraplegin ATPase protease
|
16q24.3
|
AR
|
Spastic paraplegia
|
[cvi]
|
|
HSPD1
|
118190
|
Mitochondrial chaperone
|
2q33.1
|
AR
|
Spastic paraplegia, leukodystrophy
|
[cvii]
|
| | | | | | | |
| | | | | | | |
Mitochondrial Integrity
|
DLP1
|
603850
|
Mitochondrial and peroxisomal fission
|
12p11.21
|
AD
|
Microcephaly, abnormal brain development, optic atrophy, lactic acidosis
|
[cviii]
|
|
G4.5 (Tafazzin)
|
302060
|
Cardiolipin defect
|
Xq28
|
X-linked
|
Barth syndrome, X-linked dilated cardiomyopathy
|
[cix]
|
|
RMRP
|
250250
|
RNAse Mitochondrial RNA Processing
|
9p13-p12
|
AR
|
Metaphyseal chondrodysplasia or Cartilage-hair hypoplasia
|
[cx]
|
| | | | | | | |
| | | | | | | |
Mitochondrial Metabolism
|
PDHA1
|
308930
|
Pyruvate dehydrogenase
E1-a subunit
|
Xp22.2-p22.1
|
X-linked
|
LS
|
[cxi]
|
|
ETHE1
|
602473
|
Ethylmalonic acid metabolism
|
19q13
|
AR
|
Encephalopathy, ethylmalonic aciduria
|
[cxii]
|
|
PUS1
|
600462
|
pseudouridine synthase
|
12q24.33
|
AR
|
myopathy, lactic acidosis, and sideroblastic anemia
|
[cxiii]
|
|
ATAD3
|
617183
|
mitochondrial dynamics
|
1p36.33
|
AR/AD
|
Neurodevelopmental disorder, pontocerebellar hypoplasia, encephalopathy
|
[cxiv] |
ABBREVIATIONS
AD: Autosomal Dominant; AR: Autosomal Recessive; LS: Leigh Syndrome; SANDO: Sensory Ataxic Neuropathy, Dysarthria, and Ophthalmoparesis; SCAE: Spinocerebellar Ataxia with Epilepsy; GRACILE syndrome: Growth Retardation, Amino aciduria, Cholestasis, Iron overload, Lactic acidosis, and Early death; MNGIE: MyoNeuroGastroIntestinal Encephalopathy; MDDS: Mitochondrial DNA Depletion Syndrome
REFERENCES
[i] Dunning, C.J., McKenzie, M., Sugiana, C., Lazarou, M., Silke, J., Connelly, A., Fletcher, J.M., Kirby, D.M., Thorburn, D.R., Ryan, M.T., 2007. Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO Journal 26, 3227-3237.
http://www.ncbi.nlm.nih.gov/pubmed/17557076
[ii] Ogilvie, I., Kennaway, N.G., Shoubridge, E.A., 2005. A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. The Journal of Clinical Investigation 115, 2784-2792.
http://www.ncbi.nlm.nih.gov/pubmed/16200211
[iii] Saada, A., Vogel, R.O., Hoefs, S.J., van den Brand, M.A., Wessels, H.J., Willems, P.H., Venselaar, H., Shaag, A., Barghuti, F., Reish, O., Shohat, M., Huynen, M.A., Smeitink, J.A., van den Heuvel, L.P., Nijtmans, L.G., 2009. Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. American Journal of Human Genetics 84, 718-727.
http://www.ncbi.nlm.nih.gov/pubmed/19463981
[iv] Saada, A., Edvardson, S., Rapoport, M., Shaag, A., Amry, K., Miller, C., Lorberboum-Galski, H., Elpeleg, O., 2008. C6ORF66 is an assembly factor of mitochondrial complex I. American Journal of Human Genetics 82, 32-38.
http://www.ncbi.nlm.nih.gov/pubmed/18179882
[v] Gerards, M., Sluiter, W., van den Bosch, B.J., de Wit, L.E., Calis, C.M., Frentzen, M., Akbari, H., Schoonderwoerd, K., Scholte, H.R., Jongbloed, R.J., Hendrickx, A.T., de Coo, I.F., Smeets, H.J., 2010. Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. Journal of Medical Genetics 47, 507-512.
http://www.ncbi.nlm.nih.gov/pubmed/19542079 Sugiana, C., Pagliarini, D.J., McKenzie, M., Kirby, D.M., Salemi, R., Abu-Amero, K.K., Dahl, H.H., Hutchison, W.M., Vascotto, K.A., Smith, S.M., Newbold, R.F., Christodoulou, J., Calvo, S., Mootha, V.K., Ryan, M.T., Thorburn, D.R., 2008. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. American Journal of Human Genetics 83, 468-478.
http://www.ncbi.nlm.nih.gov/pubmed/18940309
[vi] Bianciardi, L., Imperatore, V., Fernandez-Vizarra, E., Lopomo, A., Falabella, M., Furini, S., Galluzzi, P., Grosso, S., Zeviani, M., Renieri, A., Mari, F., Frullanti, E., 2016. Exome sequencing coupled with mRNA analysis identifies NDUFAF6 as a Leigh gene. Molecular Genetics and Metabolism 119, 214-222.
https://www.ncbi.nlm.nih.gov/pubmed/27623250
[vii] Calvo, S.E., Tucker, E.J., Compton, A.G., Kirby, D.M., Crawford, G., Burtt, N.P., Rivas, M., Guiducci, C., Bruno, D.L., Goldberger, O.A., Redman, M.C., Wiltshire, E., Wilson, C.J., Altshuler, D., Gabriel, S.B., Daly, M.J., Thorburn, D.R., Mootha, V.K., 2010. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nature Genetics 42, 851-858.
http://www.ncbi.nlm.nih.gov/pubmed/20818383
[viii] Ibid.
[ix] Haack, T.B., Danhauser, K., Haberberger, B., Hoser, J., Strecker, V., Boehm, D., Uziel, G., Lamantea, E., Invernizzi, F., Poulton, J., Rolinski, B., Iuso, A., Biskup, S., Schmidt, T., Mewes, H.W., Wittig, I., Meitinger, T., Zeviani, M., Prokisch, H., 2010. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nature Genetics 42, 1131-1134.
http://www.ncbi.nlm.nih.gov/pubmed/21057504
[x] Ghezzi, D., Goffrini, P., Uziel, G., Horvath, R., Klopstock, T., Lochmuller, H., D'Adamo, P., Gasparini, P., Strom, T.M., Prokisch, H., Invernizzi, F., Ferrero, I., Zeviani, M., 2009. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nature Genetics 41, 654-656.
http://www.ncbi.nlm.nih.gov/pubmed/19465911
[xi] Hao, H.X., Khalimonchuk, O., Schraders, M., Dephoure, N., Bayley, J.P., Kunst, H., Devilee, P., Cremers, C.W., Schiffman, J.D., Bentz, B.G., Gygi, S.P., Winge, D.R., Kremer, H., Rutter, J., 2009. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139-1142.
http://www.ncbi.nlm.nih.gov/pubmed/19628817
[xii] de Lonlay, P., Valnot, I., Barrientos, A., Gorbatyuk, M., Tzagoloff, A., Taanman, J.W., Benayoun, E., Chretien, D., Kadhom, N., Lombes, A., de Baulny, H.O., Niaudet, P., Munnich, A., Rustin, P., Rotig, A., 2001. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nature Genetics 29, 57-60.
http://www.ncbi.nlm.nih.gov/pubmed/11528392 Hinson, J.T., Fantin, V.R., Schonberger, J., Breivik, N., Siem, G., McDonough, B., Sharma, P., Keogh, I., Godinho, R., Santos, F., Esparza, A., Nicolau, Y., Selvaag, E., Cohen, B.H., Hoppel, C.L., Tranebjaerg, L., Eavey, R.D., Seidman, J.G., Seidman, C.E., 2007. Missense mutations in the BCS1L gene as a cause of the Bjornstad syndrome. The New England Journal of Medicine 356, 809-819.
http://www.ncbi.nlm.nih.gov/pubmed/17314340 Visapaa, I., Fellman, V., Vesa, J., Dasvarma, A., Hutton, J.L., Kumar, V., Payne, G.S., Makarow, M., Van Coster, R., Taylor, R.W., Turnbull, D.M., Suomalainen, A., Peltonen, L., 2002. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. American Journal of Human Genetics 71, 863-876.
http://www.ncbi.nlm.nih.gov/pubmed/12215968
[xiii] Tucker, E.J., Wanschers, B.F., Szklarczyk, R., Mountford, H.S., Wijeyeratne, X.W., van den Brand, M.A., Leenders, A.M., Rodenburg, R.J., Reljic, B., Compton, A.G., Frazier, A.E., Bruno, D.L., Christodoulou, J., Endo, H., Ryan, M.T., Nijtmans, L.G., Huynen, M.A., Thorburn, D.R., 2013. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLoS Genetics 9, e1004034.
https://www.ncbi.nlm.nih.gov/pubmed/24385928
[xiv] Wanschers, B.F., Szklarczyk, R., van den Brand, M.A., Jonckheere, A., Suijskens, J., Smeets, R., Rodenburg, R.J., Stephan, K., Helland, I.B., Elkamil, A., Rootwelt, T., Ott, M., van den Heuvel, L., Nijtmans, L.G., Huynen, M.A., 2014. A mutation in the human CBP4 ortholog UQCC3 impairs complex III assembly, activity and cytochrome b stability. Human Molecular Genetics 23, 6356-6365.
https://www.ncbi.nlm.nih.gov/pubmed/25008109
[xv] Tiranti, V., Hoertnagel, K., Carrozzo, R., Galimberti, C., Munaro, M., Granatiero, M., Zelante, L., Gasparini, P., Marzella, R., Rocchi, M., Bayona-Bafaluy, M.P., Enriquez, J.A., Uziel, G., Bertini, E., Dionisi-Vici, C., Franco, B., Meitinger, T., Zeviani, M., 1998. Mutations of SURF-1 in Leigh Disease associated with cytochrome c oxidase deficiency. American Journal of Human Genetics 63, 1609-1621.
http://www.ncbi.nlm.nih.gov/pubmed/9837813 Zhu, Z., Yao, J., Johns, T., Fu, K., De Bie, I., Macmillan, C., Cuthbert, A.P., Newbold, R.F., Wang, J., Chevrette, M., Brown, G.K., Brown, R.M., Shoubridge, E.A., 1998. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nature Genetics 20, 337-343.
http://www.ncbi.nlm.nih.gov/pubmed/9843204
[xvi] Valnot, I., Osmond, S., Gigarel, N., Mehaye, B., Amiel, J., Cormier-Daire, V., Munnich, A., Bonnefont, J.P., Rustin, P., Rotig, A., 2000. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. American Journal of Human Genetics 67, 1104-1109.
http://www.ncbi.nlm.nih.gov/pubmed/11013136
[xvii] Papadopoulou, L.C., Sue, C.M., Davidson, M.M., Tanji, K., Nishino, I., Sadlock, J.E., Krishna, S., Walker, W., Selby, J., Glerum, D.M., Coster, R.V., Lyon, G., Scalais, E., Lebel, R., Kaplan, P., Shanske, S., De Vivo, D.C., Bonilla, E., Hirano, M., DiMauro, S., Schon, E.A., 1999. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nature Genetics 23, 333-337.
http://www.ncbi.nlm.nih.gov/pubmed/10545952
[xviii] Antonicka, H., Leary, S.C., Guercin, G.H., Agar, J.N., Horvath, R., Kennaway, N.G., Harding, C.O., Jaksch, M., Shoubridge, E.A., 2003a. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Human Molecular Genetics 12, 2693-2702.
http://www.ncbi.nlm.nih.gov/pubmed/12928484 Valnot, I., Osmond, S., Gigarel, N., Mehaye, B., Amiel, J., Cormier-Daire, V., Munnich, A., Bonnefont, J.P., Rustin, P., Rotig, A., 2000. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. American Journal of Human Genetics 67, 1104-1109.
http://www.ncbi.nlm.nih.gov/pubmed/11013136
[xix] Weraarpachai, W., Sasarman, F., Nishimura, T., Antonicka, H., Aure, K., Rotig, A., Lombes, A., Shoubridge, E.A., 2012. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Human Genetics 90, 142-151.
https://www.ncbi.nlm.nih.gov/pubmed/22243966
[xx] Antonicka, H., Mattman, A., Carlson, C.G., Glerum, D.M., Hoffbuhr, K.C., Leary, S.C., Kennaway, N.G., Shoubridge, E.A., 2003b. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. American Journal of Human Genetics 72, 101-114.
http://www.ncbi.nlm.nih.gov/pubmed/12474143 Oquendo, C.E., Antonicka, H., Shoubridge, E.A., Reardon, W., Brown, G.K., 2004. Functional and genetic studies demonstrate that mutation in the COX15 gene can cause Leigh syndrome. Journal of Medical Genetics 41, 540-544.
http://www.ncbi.nlm.nih.gov/pubmed/15235026
[xxi] Szklarczyk, R., Wanschers, B.F., Nijtmans, L.G., Rodenburg, R.J., Zschocke, J., Dikow, N., van den Brand, M.A., Hendriks-Franssen, M.G., Gilissen, C., Veltman, J.A., Nooteboom, M., Koopman, W.J., Willems, P.H., Smeitink, J.A., Huynen, M.A., van den Heuvel, L.P., 2013. A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia. Human Molecular Genetics 22, 656-667.
https://www.ncbi.nlm.nih.gov/pubmed/23125284
[xxii] Ostergaard, E., Weraarpachai, W., Ravn, K., Born, A.P., Jonson, L., Duno, M., Wibrand, F., Shoubridge, E.A., Vissing, J., 2015. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature. Journal of Medical Genetics 52, 203-207.
https://www.ncbi.nlm.nih.gov/pubmed/25604084
[xxiii] Huigsloot, M., Nijtmans, L.G., Szklarczyk, R., Baars, M.J., van den Brand, M.A., Hendriksfranssen, M.G., van den Heuvel, L.P., Smeitink, J.A., Huynen, M.A., Rodenburg, R.J., 2011. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. American Journal of Human Genetics 88, 488-493.
http://www.ncbi.nlm.nih.gov/pubmed/21457908
[xxiv] Baertling, F., M, A.M.v.d.B., Hertecant, J.L., Al-Shamsi, A., L, P.v.d.H., Distelmaier, F., Mayatepek, E., Smeitink, J.A., Nijtmans, L.G., Rodenburg, R.J., 2015. Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy. Human Mutation 36, 34-38.
https://www.ncbi.nlm.nih.gov/pubmed/25339201
[xxv] Mootha, V.K., Lepage, P., Miller, K., Bunkenborg, J., Reich, M., Hjerrild, M., Delmonte, T., Villeneuve, A., Sladek, R., Xu, F., Mitchell, G.A., Morin, C., Mann, M., Hudson, T.J., Robinson, B., Rioux, J.D., Lander, E.S., 2003. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proceedings of the National Academy of Sciences of the United States of America 100, 605-610.
http://www.ncbi.nlm.nih.gov/pubmed/12529507
[xxvi] Ghezzi, D., Saada, A., D'Adamo, P., Fernandez-Vizarra, E., Gasparini, P., Tiranti, V., Elpeleg, O., Zeviani, M., 2008. FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. American Journal of Human Genetics 83, 415-423.
http://www.ncbi.nlm.nih.gov/pubmed/18771761
[xxvii] Weraarpachai, W., Antonicka, H., Sasarman, F., Seeger, J., Schrank, B., Kolesar, J.E., Lochmuller, H., Chevrette, M., Kaufman, B.A., Horvath, R., Shoubridge, E.A., 2009. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nature Genetics 41, 833-837.
http://www.ncbi.nlm.nih.gov/pubmed/19503089
[xxviii] De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., Van Coster, R., 2004. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. Journal of Medical Genetics 41, 120-124.
http://www.ncbi.nlm.nih.gov/pubmed/14757859
[xxix] Cizkova, A., Stranecky, V., Mayr, J.A., Tesarova, M., Havlickova, V., Paul, J., Ivanek, R., Kuss, A.W., Hansikova, H., Kaplanova, V., Vrbacky, M., Hartmannova, H., Noskova, L., Honzik, T., Drahota, Z., Magner, M., Hejzlarova, K., Sperl, W., Zeman, J., Houstek, J., Kmoch, S., 2008. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nature Genetics 40, 1288-1290.
http://www.ncbi.nlm.nih.gov/pubmed/18953340
[xxx] Naviaux, R.K., Nguyen, K.V., 2004. POLG mutations associated with Alpers' syndrome and mitochondrial DNA depletion. Annals of Neurology 55, 706-712.
http://www.ncbi.nlm.nih.gov/pubmed/15122711 Rovio, A.T., Marchington, D.R., Donat, S., Schuppe, H.C., Abel, J., Fritsche, E., Elliott, D.J., Laippala, P., Ahola, A.L., McNay, D., Harrison, R.F., Hughes, B., Barrett, T., Bailey, D.M., Mehmet, D., Jequier, A.M., Hargreave, T.B., Kao, S.H., Cummins, J.M., Barton, D.E., Cooke, H.J., Wei, Y.H., Wichmann, L., Poulton, J., Jacobs, H.T., 2001. Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nature Genetics 29, 261-262.
http://www.ncbi.nlm.nih.gov/pubmed/11687794 Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J.J., Van Broeckhoven, C., 2001. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genetics 28, 211-212.
http://www.ncbi.nlm.nih.gov/pubmed/11431686
[xxxi] Longley, M.J., Clark, S., Yu Wai Man, C., Hudson, G., Durham, S.E., Taylor, R.W., Nightingale, S., Turnbull, D.M., Copeland, W.C., Chinnery, P.F., 2006. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. American Journal of Human Genetics 78, 1026-1034.
http://www.ncbi.nlm.nih.gov/pubmed/16685652
[xxxii] Kaukonen, J., Juselius, J.K., Tiranti, V., Kyttala, A., Zeviani, M., Comi, G.P., Keranen, S., Peltonen, L., Suomalainen, A., 2000. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782-785.
http://www.ncbi.nlm.nih.gov/pubmed/10926541 Strauss, K.A., Dubiner, L., Simon, M., Zaragoza, M., Sengupta, P.P., Li, P., Narula, N., Dreike, S., Platt, J., Procaccio, V., Ortiz-Gonzalez, X.R., Puffenberger, E.G., Kelley, R.I., Morton, D.H., Narula, J., Wallace, D.C., 2013. Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proceedings of the National Academy of Sciences of the United States of America 110, 3253-3458.
http://www.ncbi.nlm.nih.gov/pubmed/23401503
[xxxiii] Spinazzola, A., Viscomi, C., Fernandez-Vizarra, E., Carrara, F., D'Adamo, P., Calvo, S., Marsano, R.M., Donnini, C., Weiher, H., Strisciuglio, P., Parini, R., Sarzi, E., Chan, A., DiMauro, S., Rotig, A., Gasparini, P., Ferrero, I., Mootha, V.K., Tiranti, V., Zeviani, M., 2006. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nature Genetics 38, 570-575.
http://www.ncbi.nlm.nih.gov/pubmed/16582910
[xxxiv] Alexander, C., Votruba, M., Pesch, U.E.A., Thiselton, D.L., Mayer, S., Moore, A., Rodriquez, M., Kellner, U., Leo-Kottler, B., Auburger, G., Bhattcharya, S.S., Wissinger, B., 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genetics 26, 211-215.
http://www.ncbi.nlm.nih.gov/pubmed/11017080 Amati-Bonneau, P., Valentino, M.L., Reynier, P., Gallardo, M.E., Bornstein, B., Boissiere, A., Campos, Y., Rivera, H., de la Aleja, J.G., Carroccia, R., Iommarini, L., Labauge, P., Figarella-Branger, D., Marcorelles, P., Furby, A., Beauvais, K., Letournel, F., Liguori, R., La Morgia, C., Montagna, P., Liguori, M., Zanna, C., Rugolo, M., Cossarizza, A., Wissinger, B., Verny, C., Schwarzenbacher, R., Martin, M.A., Arenas, J., Ayuso, C., Garesse, R., Lenaers, G., Bonneau, D., Carelli, V., 2008. OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain 131, 338-351.
http://www.ncbi.nlm.nih.gov/pubmed/18158317 Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., Hamel, C.P., 2000. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genetics 26, 207-210.
http://www.ncbi.nlm.nih.gov/pubmed/11017079
[xxxv] Kijima, K., Numakura, C., Izumino, H., Umetsu, K., Nezu, A., Shiiki, T., Ogawa, M., Ishizaki, Y., Kitamura, T., Shozawa, Y., Hayasaka, K., 2005. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Human Genetics 116, 23-27.
http://www.ncbi.nlm.nih.gov/pubmed/15549395 Rouzier, C., Bannwarth, S., Chaussenot, A., Chevrollier, A., Verschueren, A., Bonello-Palot, N., Fragaki, K., Cano, A., Pouget, J., Pellissier, J.F., Procaccio, V., Chabrol, B., Paquis-Flucklinger, V., 2012. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. Brain 135, 23-34.
http://www.ncbi.nlm.nih.gov/pubmed/22189565 Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., Parman, Y., Evgrafov, O., Jonghe, P.D., Takahashi, Y., Tsuji, S., Pericak-Vance, M.A., Quattrone, A., Battaloglu, E., Polyakov, A.V., Timmerman, V., Schroder, J.M., Vance, J.M., 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genetics 36, 449-451.
http://www.ncbi.nlm.nih.gov/pubmed/15064763
[xxxvi] Hudson, G., Deschauer, M., Busse, K., Zierz, S., Chinnery, P.F., 2005. Sensory ataxic neuropathy due to a novel C10Orf2 mutation with probable germline mosaicism. Neurology 64, 371-373.
http://www.ncbi.nlm.nih.gov/pubmed/15668446 Spelbrink, J.N., Li, F.Y., Tiranti, V., Nikali, K., Yuan, Q.P., Tariq, M., Wanrooij, S., Garrido, N., Comi, G., Morandi, L., Santoro, L., Toscano, A., Fabrizi, G.M., Somer, H., Croxen, R., Beeson, D., Poulton, J., Suomalainen, A., Jacobs, H.T., Zeviani, M., Larsson, C., 2001. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nature Genetics 28, 223-231.
http://www.ncbi.nlm.nih.gov/pubmed/11431692
[xxxvii] Nishino, I., Spinazzola, A., Hirano, M., 1999. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283, 689-692.
[xxxviii] Mandel, H., Szargel, R., Labay, V., Elpeleg, O., Saada, A., Shalata, A., Anbinder, Y., Berkowitz, D., Hartman, C., Barak, M., Eriksson, S., Cohen, N., 2001. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genetics 29, 337-341.
http://www.ncbi.nlm.nih.gov/pubmed/11687800
[xxxix] Bourdon, A., Minai, L., Serre, V., Jais, J.P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A., Rotig, A., 2007. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nature Genetics 39, 776-780.
http://www.ncbi.nlm.nih.gov/pubmed/17486094 Shaibani, A., Shchelochkov, O.A., Zhang, S., Katsonis, P., Lichtarge, O., Wong, L.J., Shinawi, M., 2009. Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Archives of Neurology 66, 1028-1032.
http://www.ncbi.nlm.nih.gov/pubmed/19667227 Tyynismaa, H., Ylikallio, E., Patel, M., Molnar, M.J., Haller, R.G., Suomalainen, A., 2009. A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. American Journal of Human Genetics 85, 290-295.
http://www.ncbi.nlm.nih.gov/pubmed/19664747
[xl] Elpeleg, O., Miller, C., Hershkovitz, E., Bitner-Glindzicz, M., Bondi-Rubinstein, G., Rahman, S., Pagnamenta, A., Eshhar, S., Saada, A., 2005. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. American Journal of Human Genetics 76, 1081-1086.
http://www.ncbi.nlm.nih.gov/pubmed/15877282
[xli] Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E.A., Wibrand, F., 2007. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. American Journal of Human Genetics 81, 383-387.
http://www.ncbi.nlm.nih.gov/pubmed/17668387
[xlii] Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., Elpeleg, O., 2001. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genetics 29, 342-344.
http://www.ncbi.nlm.nih.gov/pubmed/11687801
[xliii] Stiles, A.R., Simon, M.T., Stover, A., Eftekharian, S., Khanlou, N., Wang, H.L., Magaki, S., Lee, H., Partynski, K., Dorrani, N., Chang, R., Martinez-Agosto, J.A., Abdenur, J.E., 2016. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Molecular Genetics and Metabolism 119, 91-99.
https://www.ncbi.nlm.nih.gov/pubmed/27448789
[xliv] Gai, X., Ghezzi, D., Johnson, M.A., Biagosch, C.A., Shamseldin, H.E., Haack, T.B., Reyes, A., Tsukikawa, M., Sheldon, C.A., Srinivasan, S., Gorza, M., Kremer, L.S., Wieland, T., Strom, T.M., Polyak, E., Place, E., Consugar, M., Ostrovsky, J., Vidoni, S., Robinson, A.J., Wong, L.J., Sondheimer, N., Salih, M.A., Al-Jishi, E., Raab, C.P., Bean, C., Furlan, F., Parini, R., Lamperti, C., Mayr, J.A., Konstantopoulou, V., Huemer, M., Pierce, E.A., Meitinger, T., Freisinger, P., Sperl, W., Prokisch, H., Alkuraya, F.S., Falk, M.J., Zeviani, M., 2013. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. American Journal of Human Genetics 93, 482-495.
https://www.ncbi.nlm.nih.gov/pubmed/23993194
[xlv] Kornblum, C., Nicholls, T.J., Haack, T.B., Scholer, S., Peeva, V., Danhauser, K., Hallmann, K., Zsurka, G., Rorbach, J., Iuso, A., Wieland, T., Sciacco, M., Ronchi, D., Comi, G.P., Moggio, M., Quinzii, C.M., DiMauro, S., Calvo, S.E., Mootha, V.K., Klopstock, T., Strom, T.M., Meitinger, T., Minczuk, M., Kunz, W.S., Prokisch, H., 2013. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nature Genetics 45, 214-219.
https://www.ncbi.nlm.nih.gov/pubmed/23313956
[xlvi] Jin, H., May, M., Tranebjaerg, L., Kendall, E., Fontan, G., Jackson, J., Subramony, S.H., Arena, F., Lubs, H., Smith, S., Stevenson, R., Schwartz, C., Vetrie, D., 1996. A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nature Genetics 14, 177-180.
http://www.ncbi.nlm.nih.gov/pubmed/8841189
[xlvii] Davey, K.M., Parboosingh, J.S., McLeod, D.R., Chan, A., Casey, R., Ferreira, P., Snyder, F.F., Bridge, P.J., Bernier, F.P., 2006. Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. Journal of Medical Genetics 43, 385-393.
http://www.ncbi.nlm.nih.gov/pubmed/16055927
[xlviii] Dallabona, C., Diodato, D., Kevelam, S.H., Haack, T.B., Wong, L.J., Salomons, G.S., Baruffini, E., Melchionda, L., Mariotti, C., Strom, T.M., Meitinger, T., Prokisch, H., Chapman, K., Colley, A., Rocha, H., Ounap, K., Schiffmann, R., Salsano, E., Savoiardo, M., Hamilton, E.M., Abbink, T.E., Wolf, N.I., Ferrero, I., Lamperti, C., Zeviani, M., Vanderver, A., Ghezzi, D., van der Knaap, M.S., 2014. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology 82, 2063-2071.
https://www.ncbi.nlm.nih.gov/pubmed/24808023 Gotz, A., Tyynismaa, H., Euro, L., Ellonen, P., Hyotylainen, T., Ojala, T., Hamalainen, R.H., Tommiska, J., Raivio, T., Oresic, M., Karikoski, R., Tammela, O., Simola, K.O., Paetau, A., Tyni, T., Suomalainen, A., 2011. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. American Journal of Human Genetics 88, 635-642.
http://www.ncbi.nlm.nih.gov/pubmed/21549344
[xlix] Hallmann, K., Zsurka, G., Moskau-Hartmann, S., Kirschner, J., Korinthenberg, R., Ruppert, A.K., Ozdemir, O., Weber, Y., Becker, F., Lerche, H., Elger, C.E., Thiele, H., Nurnberg, P., Sander, T., Kunz, W.S., 2014. A homozygous splice-site mutation in CARS2 is associated with progressive myoclonic epilepsy. Neurology 83, 2183-2187.
https://www.ncbi.nlm.nih.gov/pubmed/25361775
[l] Scheper, G.C., van der Klok, T., van Andel, R.J., van Berkel, C.G., Sissler, M., Smet, J., Muravina, T.I., Serkov, S.V., Uziel, G., Bugiani, M., Schiffmann, R., Krageloh-Mann, I., Smeitink, J.A., Florentz, C., Van Coster, R., Pronk, J.C., van der Knaap, M.S., 2007. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nature Genetics 39, 534-539.
http://www.ncbi.nlm.nih.gov/pubmed/17384640
[li] Steenweg, M.E., Ghezzi, D., Haack, T., Abbink, T.E., Martinelli, D., van Berkel, C.G., Bley, A., Diogo, L., Grillo, E., Te Water Naude, J., Strom, T.M., Bertini, E., Prokisch, H., van der Knaap, M.S., Zeviani, M., 2012. Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations. Brain 135, 1387-1394.
https://www.ncbi.nlm.nih.gov/pubmed/22492562
[lii] Elo, J.M., Yadavalli, S.S., Euro, L., Isohanni, P., Gotz, A., Carroll, C.J., Valanne, L., Alkuraya, F.S., Uusimaa, J., Paetau, A., Caruso, E.M., Pihko, H., Ibba, M., Tyynismaa, H., Suomalainen, A., 2012. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Human Molecular Genetics 21, 4521-4529.
https://www.ncbi.nlm.nih.gov/pubmed/22833457 Yang, Y., Liu, W., Fang, Z., Shi, J., Che, F., He, C., Yao, L., Wang, E., Wu, Y., 2016. A newly identified missense nutation in FARS2 causes autosomal-recessive spastic paraplegia. Human Mutation 37, 165-169.
https://www.ncbi.nlm.nih.gov/pubmed/26553276
[liii] Antonellis, A., Ellsworth, R.E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S.Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L.T., Sivakumar, K., Ionasescu, V., Funalot, B., Vance, J.M., Goldfarb, L.G., Fischbeck, K.H., Green, E.D., 2003. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. American Journal of Human Genetics 72, 1293-1299.
https://www.ncbi.nlm.nih.gov/pubmed/12690580
[liv] Pierce, S.B., Chisholm, K.M., Lynch, E.D., Lee, M.K., Walsh, T., Opitz, J.M., Li, W., Klevit, R.E., King, M.C., 2011. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proceedings of the National Academy of Sciences of the United States of America 108, 6543-6548.
https://www.ncbi.nlm.nih.gov/pubmed/21464306
[lv] Schwartzentruber, J., Buhas, D., Majewski, J., Sasarman, F., Papillon-Cavanagh, S., Thiffault, I., Sheldon, K.M., Massicotte, C., Patry, L., Simon, M., Zare, A.S., McKernan, K.J., Consortium, F.C., Michaud, J., Boles, R.G., Deal, C.L., Desilets, V., Shoubridge, E.A., Samuels, M.E., 2014. Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome. Human Mutation 35, 1285-1289. Erratum: Hum. Mutat. 1236: 1281, 2015.
https://www.ncbi.nlm.nih.gov/pubmed/25130867
[lvi] McLaughlin, H.M., Sakaguchi, R., Liu, C., Igarashi, T., Pehlivan, D., Chu, K., Iyer, R., Cruz, P., Cherukuri, P.F., Hansen, N.F., Mullikin, J.C., Program, N.C.S., Biesecker, L.G., Wilson, T.E., Ionasescu, V., Nicholson, G., Searby, C., Talbot, K., Vance, J.M., Zuchner, S., Szigeti, K., Lupski, J.R., Hou, Y.M., Green, E.D., Antonellis, A., 2010. Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. American Journal of Human Genetics 87, 560-566.
https://www.ncbi.nlm.nih.gov/pubmed/20920668 Santos-Cortez, R.L., Lee, K., Azeem, Z., Antonellis, P.J., Pollock, L.M., Khan, S., Irfanullah, Andrade-Elizondo, P.B., Chiu, I., Adams, M.D., Basit, S., Smith, J.D., University of Washington Center for Mendelian, G., Nickerson, D.A., McDermott, B.M., Jr., Ahmad, W., Leal, S.M., 2013. Mutations in KARS, encoding lysyl-tRNA synthetase, cause autosomal-recessive nonsyndromic hearing impairment DFNB89. American Journal of Human Genetics 93, 132-140.
https://www.ncbi.nlm.nih.gov/pubmed/23768514
[lvii] Casey, J.P., McGettigan, P., Lynam-Lennon, N., McDermott, M., Regan, R., Conroy, J., Bourke, B., O'Sullivan, J., Crushell, E., Lynch, S., Ennis, S., 2012. Identification of a mutation in LARS as a novel cause of infantile hepatopathy. Molecular Genetics and Metabolism 106, 351-358.
https://www.ncbi.nlm.nih.gov/pubmed/22607940
[lviii] Pierce, S.B., Gersak, K., Michaelson-Cohen, R., Walsh, T., Lee, M.K., Malach, D., Klevit, R.E., King, M.C., Levy-Lahad, E., 2013. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. American Journal of Human Genetics 92, 614-620.
https://www.ncbi.nlm.nih.gov/pubmed/23541342
Sofou, K., Kollberg, G., Holmstrom, M., Davila, M., Darin, N., Gustafsson, C.M., Holme, E., Oldfors, A., Tulinius, M., Asin-Cayuela, J., 2015. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Molecular Genetics and Genomic Medicine 3, 59-68.
https://www.ncbi.nlm.nih.gov/pubmed/25629079
[lx] Ibid.
[lxi] Edvardson, S., Shaag, A., Kolesnikova, O., Gomori, J.M., Tarassov, I., Einbinder, T., Saada, A., Elpeleg, O., 2007. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. American Journal of Human Genetics 81, 857-862.
http://www.ncbi.nlm.nih.gov/pubmed/17847012
[lxii] Belostotsky, R., Ben-Shalom, E., Rinat, C., Becker-Cohen, R., Feinstein, S., Zeligson, S., Segel, R., Elpeleg, O., Nassar, S., Frishberg, Y., 2011. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. American Journal of Human Genetics 88, 193-200.
http://www.ncbi.nlm.nih.gov/pubmed/21255763
[lxiii] Diodato, D., Melchionda, L., Haack, T.B., Dallabona, C., Baruffini, E., Donnini, C., Granata, T., Ragona, F., Balestri, P., Margollicci, M., Lamantea, E., Nasca, A., Powell, C.A., Minczuk, M., Strom, T.M., Meitinger, T., Prokisch, H., Lamperti, C., Zeviani, M., Ghezzi, D., 2014. VARS2 and TARS2 mutations in patients with mitochondrial encephalomyopathies. Human Mutation 35, 983-989.
https://www.ncbi.nlm.nih.gov/pubmed/24827421
[lxiv] Ibid.
[lxv] Riley, L.G., Cooper, S., Hickey, P., Rudinger-Thirion, J., McKenzie, M., Compton, A., Lim, S.C., Thorburn, D., Ryan, M.T., Giege, R., Bahlo, M., Christodoulou, J., 2010. Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia--MLASA syndrome. American Journal of Human Genetics 87, 52-59.
http://www.ncbi.nlm.nih.gov/pubmed/20598274
[lxvi] Coenen, M.J., Antonicka, H., Ugalde, C., Sasarman, F., Rossi, R., Heister, J.G., Newbold, R.F., Trijbels, F.J., van den Heuvel, L.P., Shoubridge, E.A., Smeitink, J.A., 2004. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. The New England Journal of Medicine 351, 2080-2086.
http://www.ncbi.nlm.nih.gov/pubmed/15537906
[lxvii] Smeitink, J.A., Elpeleg, O., Antonicka, H., Diepstra, H., Saada, A., Smits, P., Sasarman, F., Vriend, G., Jacob-Hirsch, J., Shaag, A., Rechavi, G., Welling, B., Horst, J., Rodenburg, R.J., van den Heuvel, B., Shoubridge, E.A., 2006. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. American Journal of Human Genetics 79, 869-877.
http://www.ncbi.nlm.nih.gov/pubmed/17033963
[lxviii] Valente, L., Tiranti, V., Marsano, R.M., Malfatti, E., Fernandez-Vizarra, E., Donnini, C., Mereghetti, P., De Gioia, L., Burlina, A., Castellan, C., Comi, G.P., Savasta, S., Ferrero, I., Zeviani, M., 2007. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. American Journal of Human Genetics 80, 44-58. Erratum: Am. J. Hum. Genet. 80: 580, 2007.
http://www.ncbi.nlm.nih.gov/pubmed/17160893
[lxix] Kopajtich, R., Nicholls, T.J., Rorbach, J., Metodiev, M.D., Freisinger, P., Mandel, H., Vanlander, A., Ghezzi, D., Carrozzo, R., Taylor, R.W., Marquard, K., Murayama, K., Wieland, T., Schwarzmayr, T., Mayr, J.A., Pearce, S.F., Powell, C.A., Saada, A., Ohtake, A., Invernizzi, F., Lamantea, E., Sommerville, E.W., Pyle, A., Chinnery, P.F., Crushell, E., Okazaki, Y., Kohda, M., Kishita, Y., Tokuzawa, Y., Assouline, Z., Rio, M., Feillet, F., Mousson de Camaret, B., Chretien, D., Munnich, A., Menten, B., Sante, T., Smet, J., Regal, L., Lorber, A., Khoury, A., Zeviani, M., Strom, T.M., Meitinger, T., Bertini, E.S., Van Coster, R., Klopstock, T., Rotig, A., Haack, T.B., Minczuk, M., Prokisch, H., 2014. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. American Journal of Human Genetics 95, 708-720.
https://www.ncbi.nlm.nih.gov/pubmed/25434004
[lxx] Haack, T.B., Haberberger, B., Frisch, E.M., Wieland, T., Iuso, A., Gorza, M., Strecker, V., Graf, E., Mayr, J.A., Herberg, U., Hennermann, J.B., Klopstock, T., Kuhn, K.A., Ahting, U., Sperl, W., Wilichowski, E., Hoffmann, G.F., Tesarova, M., Hansikova, H., Zeman, J., Plecko, B., Zeviani, M., Wittig, I., Strom, T.M., Schuelke, M., Freisinger, P., Meitinger, T., Prokisch, H., 2012. Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. Journal of Medical Genetics 49, 277-283.
https://www.ncbi.nlm.nih.gov/pubmed/22499348
[lxxi] Ghezzi, D., Baruffini, E., Haack, T.B., Invernizzi, F., Melchionda, L., Dallabona, C., Strom, T.M., Parini, R., Burlina, A.B., Meitinger, T., Prokisch, H., Ferrero, I., Zeviani, M., 2012. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. American Journal of Human Genetics 90, 1079-1087.
https://www.ncbi.nlm.nih.gov/pubmed/22608499
[lxxii] Powell, C.A., Kopajtich, R., D'Souza, A.R., Rorbach, J., Kremer, L.S., Husain, R.A., Dallabona, C., Donnini, C., Alston, C.L., Griffin, H., Pyle, A., Chinnery, P.F., Strom, T.M., Meitinger, T., Rodenburg, R.J., Schottmann, G., Schuelke, M., Romain, N., Haller, R.G., Ferrero, I., Haack, T.B., Taylor, R.W., Prokisch, H., Minczuk, M., 2015. TRMT5 mutations cause a defect in post-transcriptional modification of mitochondrial tRNA associated with multiple respiratory-chain deficiencies. American Journal of Human Genetics 97, 319-328.
https://www.ncbi.nlm.nih.gov/pubmed/26189817
[lxxiii] Metodiev, M.D., Thompson, K., Alston, C.L., Morris, A.A.M., He, L., Assouline, Z., Rio, M., Bahi-Buisson, N., Pyle, A., Griffin, H., Siira, S., Filipovska, A., Munnich, A., Chinnery, P.F., McFarland, R., Rotig, A., Taylor, R.W., 2016. Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. American Journal of Human Genetics 98, 993-1000. Erratum: Am. J. Hum. Genet. 1099: 246, 2016.
https://www.ncbi.nlm.nih.gov/pubmed/27132592
[lxxiv] Zeharia, A., Shaag, A., Pappo, O., Mager-Heckel, A.M., Saada, A., Beinat, M., Karicheva, O., Mandel, H., Ofek, N., Segel, R., Marom, D., Rotig, A., Tarassov, I., Elpeleg, O., 2009. Acute infantile liver failure due to mutations in the TRMU gene. American Journal of Human Genetics 85, 401-407.
https://www.ncbi.nlm.nih.gov/pubmed/19732863
[lxxv] Valente, L., Tiranti, V., Marsano, R.M., Malfatti, E., Fernandez-Vizarra, E., Donnini, C., Mereghetti, P., De Gioia, L., Burlina, A., Castellan, C., Comi, G.P., Savasta, S., Ferrero, I., Zeviani, M., 2007. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. American Journal of Human Genetics 80, 44-58. Erratum: Am. J. Hum. Genet. 80: 580, 2007.
http://www.ncbi.nlm.nih.gov/pubmed/17160893
[lxxvi] Fukumura, S., Ohba, C., Watanabe, T., Minagawa, K., Shimura, M., Murayama, K., Ohtake, A., Saitsu, H., Matsumoto, N., Tsutsumi, H., 2015. Compound heterozygous GFM2 mutations with Leigh syndrome complicated by arthrogryposis multiplex congenita. Journal of Human Genetics 60, 509-513.
https://www.ncbi.nlm.nih.gov/pubmed/26016410
[lxxvii] Antonicka, H., Ostergaard, E., Sasarman, F., Weraarpachai, W., Wibrand, F., Pedersen, A.M., Rodenburg, R.J., van der Knaap, M.S., Smeitink, J.A., Chrzanowska-Lightowlers, Z.M., Shoubridge, E.A., 2010. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. American Journal of Human Genetics 87, 115-122.
http://www.ncbi.nlm.nih.gov/pubmed/20598281 Shimazaki, H., Takiyama, Y., Ishiura, H., Sakai, C., Matsushima, Y., Hatakeyama, H., Honda, J., Sakoe, K., Naoi, T., Namekawa, M., Fukuda, Y., Takahashi, Y., Goto, J., Tsuji, S., Goto, Y., Nakano, I., Japan Spastic Paraplegia Research, C., 2012. A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). Journal of Medical Genetics 49, 777-784.
https://www.ncbi.nlm.nih.gov/pubmed/23188110
[lxxviii] Janer, A., Antonicka, H., Lalonde, E., Nishimura, T., Sasarman, F., Brown, G.K., Brown, R.M., Majewski, J., Shoubridge, E.A., 2012. An RMND1 Mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect. American Journal of Human Genetics 91, 737-743.
https://www.ncbi.nlm.nih.gov/pubmed/23022098
[lxxix] Galmiche, L., Serre, V., Beinat, M., Assouline, Z., Lebre, A.S., Chretien, D., Nietschke, P., Benes, V., Boddaert, N., Sidi, D., Brunelle, F., Rio, M., Munnich, A., Rotig, A., 2011. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Human Mutation 32, 1225-1231.
http://www.ncbi.nlm.nih.gov/pubmed/21786366
[lxxx] Menezes, M.J., Guo, Y., Zhang, J., Riley, L.G., Cooper, S.T., Thorburn, D.R., Li, J., Dong, D., Li, Z., Glessner, J., Davis, R.L., Sue, C.M., Alexander, S.I., Arbuckle, S., Kirwan, P., Keating, B.J., Xu, X., Hakonarson, H., Christodoulou, J., 2015. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. Human Molecular Genetics 24, 2297-2307.
https://www.ncbi.nlm.nih.gov/pubmed/25556185
[lxxxi] Serre, V., Rozanska, A., Beinat, M., Chretien, D., Boddaert, N., Munnich, A., Rotig, A., Chrzanowska-Lightowlers, Z.M., 2013. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochimica et Biophysica Acta 1832, 1304-1312.
https://www.ncbi.nlm.nih.gov/pubmed/23603806
[lxxxii] Miller, C., Saada, A., Shaul, N., Shabtai, N., Ben-Shalom, E., Shaag, A., Hershkovitz, E., Elpeleg, O., 2004. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Annals of Neurology 56, 734-738.
http://www.ncbi.nlm.nih.gov/pubmed/15505824
[lxxxiii] Saada, A., Shaag, A., Arnon, S., Dolfin, T., Miller, C., Fuchs-Telem, D., Lombes, A., Elpeleg, O., 2007. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. Journal of Medical Genetics 44, 784-786.
http://www.ncbi.nlm.nih.gov/pubmed/17873122
[lxxxiv] Carroll, C.J., Isohanni, P., Poyhonen, R., Euro, L., Richter, U., Brilhante, V., Gotz, A., Lahtinen, T., Paetau, A., Pihko, H., Battersby, B.J., Tyynismaa, H., Suomalainen, A., 2013. Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. Journal of Medical Genetics 50, 151-159.
https://www.ncbi.nlm.nih.gov/pubmed/23315540
[lxxxv] Campuzano, V., Montermini, L., Molto, M.D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., Zara, F., Canizares, J., Koutnikova, H., Bidichandani, S.I., Gellera, C., Brice, A., Trouillas, P., DeMichele, G., Filla, A., De Frutos, R., Palau, F., Patel, P., DiDonato, S., Mandel, J., Cocozza, S., Koenig, M., Pandolfo, M., 1996. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423-1427.
http://www.ncbi.nlm.nih.gov/pubmed/8596916 Rotig, A., de Lonlay, P., Chretien, D., Foury, F., Koenig, M., Sidi, D., Munnich, A., Rustin, P., 1997. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nature Genetics 17, 215-217.
http://www.ncbi.nlm.nih.gov/pubmed/9326946
[lxxxvi] Allikmets, R., Raskind, W.H., Hutchinson, A., Schueck, N.D., Dean, M., Koeller, D.M., 1999. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Human Molecular Genetics 8, 743-749.
http://www.ncbi.nlm.nih.gov/pubmed/10196363
[lxxxvii] Guernsey, D.L., Jiang, H., Campagna, D.R., Evans, S.C., Ferguson, M., Kellogg, M.D., Lachance, M., Matsuoka, M., Nightingale, M., Rideout, A., Saint-Amant, L., Schmidt, P.J., Orr, A., Bottomley, S.S., Fleming, M.D., Ludman, M., Dyack, S., Fernandez, C.V., Samuels, M.E., 2009. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nature Genetics 41, 651-653.
http://www.ncbi.nlm.nih.gov/pubmed/19412178
[lxxxviii] Mochel, F., Knight, M.A., Tong, W.H., Hernandez, D., Ayyad, K., Taivassalo, T., Andersen, P.M., Singleton, A., Rouault, T.A., Fischbeck, K.H., Haller, R.G., 2008. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. American Journal of Human Genetics 82, 652-660.
http://www.ncbi.nlm.nih.gov/pubmed/18304497
[lxxxix] Cameron, J.M., Janer, A., Levandovskiy, V., Mackay, N., Rouault, T.A., Tong, W.H., Ogilvie, I., Shoubridge, E.A., Robinson, B.H., 2011. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. American Journal of Human Genetics 89, 486-495.
http://www.ncbi.nlm.nih.gov/pubmed/21944046
[xc] Ibid.
[xci] Al-Hassnan, Z.N., Al-Dosary, M., Alfadhel, M., Faqeih, E.A., Alsagob, M., Kenana, R., Almass, R., Al-Harazi, O.S., Al-Hindi, H., Malibari, O.I., Almutari, F.B., Tulbah, S., Alhadeq, F., Al-Sheddi, T., Alamro, R., AlAsmari, A., Almuntashri, M., Alshaalan, H., Al-Mohanna, F.A., Colak, D., Kaya, N., 2015. ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. Journal of Medical Genetics 52, 186-194.
https://www.ncbi.nlm.nih.gov/pubmed/25539947
[xcii] Ajit Bolar, N., Vanlander, A.V., Wilbrecht, C., Van der Aa, N., Smet, J., De Paepe, B., Vandeweyer, G., Kooy, F., Eyskens, F., De Latter, E., Delanghe, G., Govaert, P., Leroy, J.G., Loeys, B., Lill, R., Van Laer, L., Van Coster, R., 2013. Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Human Molecular Genetics 22, 2590-2602.
https://www.ncbi.nlm.nih.gov/pubmed/23462291 Lossos, A., Stumpfig, C., Stevanin, G., Gaussen, M., Zimmerman, B.E., Mundwiller, E., Asulin, M., Chamma, L., Sheffer, R., Misk, A., Dotan, S., Gomori, J.M., Ponger, P., Brice, A., Lerer, I., Meiner, V., Lill, R., 2015. Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia. Neurology 84, 659-667.
https://www.ncbi.nlm.nih.gov/pubmed/25609768
[xciii] Lim, S.C., Friemel, M., Marum, J.E., Tucker, E.J., Bruno, D.L., Riley, L.G., Christodoulou, J., Kirk, E.P., Boneh, A., DeGennaro, C.M., Springer, M., Mootha, V.K., Rouault, T.A., Leimkuhler, S., Thorburn, D.R., Compton, A.G., 2013. Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Human Molecular Genetics 22, 4460-4473.
https://www.ncbi.nlm.nih.gov/pubmed/23814038
[xciv] Invernizzi, F., Tigano, M., Dallabona, C., Donnini, C., Ferrero, I., Cremonte, M., Ghezzi, D., Lamperti, C., Zeviani, M., 2013. A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity. Human Mutation 34, 1619-1622.
https://www.ncbi.nlm.nih.gov/pubmed/24014394
[xcv] Spiegel, R., Saada, A., Halvardson, J., Soiferman, D., Shaag, A., Edvardson, S., Horovitz, Y., Khayat, M., Shalev, S.A., Feuk, L., Elpeleg, O., 2014. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. European Journal of Human Genetics 22, 902-906.
https://www.ncbi.nlm.nih.gov/pubmed/24281368
[xcvi] Quinzii, C., Naini, A., Salviati, L., Trevisson, E., Navas, P., Dimauro, S., Hirano, M., 2006. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. American Journal of Human Genetics 78, 345-349.
http://www.ncbi.nlm.nih.gov/pubmed/16400613
[xcvii] Salviati, L., Trevisson, E., Rodriguez Hernandez, M.A., Casarin, A., Pertegato, V., Doimo, M., Cassina, M., Agosto, C., Desbats, M.A., Sartori, G., Sacconi, S., Memo, L., Zuffardi, O., Artuch, R., Quinzii, C., Dimauro, S., Hirano, M., Santos-Ocana, C., Navas, P., 2012. Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. Journal of Medical Genetics 49, 187-191.
http://www.ncbi.nlm.nih.gov/pubmed/22368301
[xcviii] Malicdan, M.C.V., Vilboux, T., Ben-Zeev, B., Guo, J., Eliyahu, A., Pode-Shakked, B., Dori, A., Kakani, S., Chandrasekharappa, S.C., Ferreira, C.R., Shelestovich, N., Marek-Yagel, D., Pri-Chen, H., Blatt, I., Niederhuber, J.E., He, L., Toro, C., Taylor, R.W., Deeken, J., Yardeni, T., Wallace, D.C., Gahl, W.A., Anikster, Y., 2018. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Human Mutation 39, 69-79.
https://www.ncbi.nlm.nih.gov/pubmed/29044765
[xcix] Heeringa, S.F., Chernin, G., Chaki, M., Zhou, W., Sloan, A.J., Ji, Z., Xie, L.X., Salviati, L., Hurd, T.W., Vega-Warner, V., Killen, P.D., Raphael, Y., Ashraf, S., Ovunc, B., Schoeb, D.S., McLaughlin, H.M., Airik, R., Vlangos, C.N., Gbadegesin, R., Hinkes, B., Saisawat, P., Trevisson, E., Doimo, M., Casarin, A., Pertegato, V., Giorgi, G., Prokisch, H., Rotig, A., Nurnberg, G., Becker, C., Wang, S., Ozaltin, F., Topaloglu, R., Bakkaloglu, A., Bakkaloglu, S.A., Muller, D., Beissert, A., Mir, S., Berdeli, A., Varpizen, S., Zenker, M., Matejas, V., Santos-Ocana, C., Navas, P., Kusakabe, T., Kispert, A., Akman, S., Soliman, N.A., Krick, S., Mundel, P., Reiser, J., Nurnberg, P., Clarke, C.F., Wiggins, R.C., Faul, C., Hildebrandt, F., 2011. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. The Journal of Clinical Investigation 121, 2013-2024.
https://www.ncbi.nlm.nih.gov/pubmed/21540551
[c] Freyer, C., Stranneheim, H., Naess, K., Mourier, A., Felser, A., Maffezzini, C., Lesko, N., Bruhn, H., Engvall, M., Wibom, R., Barbaro, M., Hinze, Y., Magnusson, M., Andeer, R., Zetterstrom, R.H., von Dobeln, U., Wredenberg, A., Wedell, A., 2015. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. Journal of Medical Genetics 52, 779-783.
https://www.ncbi.nlm.nih.gov/pubmed/26084283
[ci] Duncan, A.J., Bitner-Glindzicz, M., Meunier, B., Costello, H., Hargreaves, I.P., Lopez, L.C., Hirano, M., Quinzii, C.M., Sadowski, M.I., Hardy, J., Singleton, A., Clayton, P.T., Rahman, S., 2009. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. American Journal of Human Genetics 84, 558-566.
http://www.ncbi.nlm.nih.gov/pubmed/19375058
[cii] Quinzii, C.M., Kattah, A.G., Naini, A., Akman, H.O., Mootha, V.K., DiMauro, S., Hirano, M., 2005. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64, 539-541.
http://www.ncbi.nlm.nih.gov/pubmed/15699391
[ciii] Mollet, J., Giurgea, I., Schlemmer, D., Dallner, G., Chretien, D., Delahodde, A., Bacq, D., de Lonlay, P., Munnich, A., Rotig, A., 2007. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. The Journal of Clinical Investigation 117, 765-772.
http://www.ncbi.nlm.nih.gov/pubmed/17332895
[civ] Lopez, L.C., Schuelke, M., Quinzii, C.M., Kanki, T., Rodenburg, R.J., Naini, A., Dimauro, S., Hirano, M., 2006. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. American Journal of Human Genetics 79, 1125-1129.
http://www.ncbi.nlm.nih.gov/pubmed/17186472
[cv] Mollet, J., Delahodde, A., Serre, V., Chretien, D., Schlemmer, D., Lombes, A., Boddaert, N., Desguerre, I., de Lonlay, P., de Baulny, H.O., Munnich, A., Rotig, A., 2008. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. American Journal of Human Genetics 82, 623-630.
http://www.ncbi.nlm.nih.gov/pubmed/18319072
[cvi] Casari, G., De Fusco, M., Ciarmatori, S., Zeviani, M., Mora, M., Fernandez, P., De Michele, G., Filla, A., Cocozza, S., Marconi, R., Durr, A., Fontaine, B., Ballabio, A., 1998. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973-983.
http://www.ncbi.nlm.nih.gov/pubmed/9635427
[cvii] Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., Mandel, H., 2008. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. American Journal of Human Genetics 83, 30-42.
http://www.ncbi.nlm.nih.gov/pubmed/18571143
[cviii] Waterham, H.R., Koster, J., van Roermund, C.W., Mooyer, P.A., Wanders, R.J., Leonard, J.V., 2007. A lethal defect of mitochondrial and peroxisomal fission. The New England Journal of Medicine 356, 1736-1741.
http://www.ncbi.nlm.nih.gov/pubmed/17460227
[cix] Bione, S., D'Adamo, P., Maestrini, E., Gedeon, A.K., Bolhuis, P.A., Toniolo, D., 1996. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nature Genetics 12, 385-389.
http://www.ncbi.nlm.nih.gov/pubmed/8630491 D'Adamo, P., Fassone, L., Gedeon, A., Janssen, E.A., Bione, S., Bolhuis, P.A., Barth, P.G., Wilson, M., Haan, E., Orstavik, K.H., Patton, M.A., Green, A.J., Zammarchi, E., Donati, M.A., Toniolo, D., 1997. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. American Journal of Human Genetics 61, 862-867.
http://www.ncbi.nlm.nih.gov/pubmed/9382096
[cx] Ridanpaa, M., Sistonen, P., Rockas, S., Rimoin, D.L., Makitie, O., Kaitila, I., 2002. Worldwide mutation spectrum in cartilage-hair hypoplasia: ancient founder origin of the major70A-->G mutation of the untranslated RMRP. European Journal of Human Genetics 10, 439-447.
http://www.ncbi.nlm.nih.gov/pubmed/12107819 Ridanpaa, M., van Eenennaam, H., Pelin, K., Chadwick, R., Johnson, C., Yuan, B., vanVenrooij, W., Pruijn, G., Salmela, R., Rockas, S., Makitie, O., Kaitila, I., de la Chapelle, A., 2001. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, Cartilage-Hair Hypoplasia. Cell 104, 195-203.
http://www.ncbi.nlm.nih.gov/pubmed/11207361
[cxi] Matthews, P.M., Marchington, D.R., Squier, M., Land, J., Brown, R.M., Brown, G.K., 1993. Molecular genetic characterization of an X-linked form of Leigh's syndrome. Annals of Neurology 33, 652-655.
http://www.ncbi.nlm.nih.gov/pubmed/8498846
[cxii] Tiranti, V., Briem, E., Lamantea, E., Mineri, R., Papaleo, E., Degioia, L., Forlani, F., Rinaldo, P., Dickson, P., Abu-Libdeh, B., Cindro-Heberle, L., Owaidha, M., Jack, R.M., Christensen, E., Burlina, A., Zeviani, M., 2006. ETHE1 mutations are specific to ethylmalonic encephalopathy. Journal of Medical Genetics 43, 340-346.
http://www.ncbi.nlm.nih.gov/pubmed/16183799 Tiranti, V., D'Adamo, P., Briem, E., Ferrari, G., Mineri, R., Lamantea, E., Mandel, H., Balestri, P., Garcia-Silva, M.T., Vollmer, B., Rinaldo, P., Hahn, S.H., Leonard, J., Rahman, S., Dionisi-Vici, C., Garavaglia, B., Gasparini, P., Zeviani, M., 2004. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. American Journal of Human Genetics 74, 239-252.
http://www.ncbi.nlm.nih.gov/pubmed/14732903
[cxiii] Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A., Fischel-Ghodsian, N., 2004.Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). American Journal of Human Genetics 74, 1303-1308.
http://www.ncbi.nlm.nih.gov/pubmed/15108122
[cxiv] Harel, T., Yoon, W.H., Garone, C., Gu, S., Coban-Akdemir, Z., Eldomery, M.K., Posey, J.E., Jhangiani, S.N., Rosenfeld, J.A., Cho, M.T., Fox, S., Withers, M., Brooks, S.M., Chiang, T., Duraine, L., Erdin, S., Yuan, B., Shao, Y., Moussallem, E., Lamperti, C., Donati, M.A., Smith, J.D., McLaughlin, H.M., Eng, C.M., Walkiewicz, M., Xia, F., Pippucci, T., Magini, P., Seri, M., Zeviani, M., Hirano, M., Hunter, J.V., Srour, M., Zanigni, S., Lewis, R.A., Muzny, D.M., Lotze, T.E., Boerwinkle, E., Baylor-Hopkins Center for Mendelian, G., University of Washington Center for Mendelian, G., Gibbs, R.A., Hickey, S.E., Graham, B.H., Yang, Y., Buhas, D., Martin, D.M., Potocki, L., Graziano, C., Bellen, H.J., Lupski, J.R., 2016. Recurrent de novo and biallelic variation of ATAD3A, encoding a mitochondrial membrane protein, results in distinct neurological syndromes. American Journal of Human Genetics 99, 831-845.
https://www.ncbi.nlm.nih.gov/pubmed/27640307