Structural Nuclear Genes for Mitochondrial Diseases
Last update: January 2018
Complex |
Name |
OMIM |
Function |
Chromosome |
Inheritance |
Clinical Phenotype |
References |
| | | | | | | |
| | | | | | | |
| | | | | | | |
Complex I |
NDUFS1 |
157655 |
IP fraction |
2q33-q34 |
AR |
LS |
[i] |
|
NDUFS2 |
602985 |
IP fraction |
1q23 |
AR |
Encephalopathy, Cardiomyopathy |
[ii] |
|
NDUFS3 |
603846 |
IP fraction |
11p11.11 |
AR |
LS |
[iii] |
|
NDUFS4 |
602694 |
IP fraction |
5q11.1 |
AR |
LS |
[iv] |
|
NDUFS6 |
603848 |
IP fraction |
5pter-p15.33 |
AR |
Fatal Infantile Lactic Acidosis |
[v] |
|
NDUFS7 |
601825 |
HP fraction |
19p13.3 |
AR |
LS |
[vi] |
|
NDUFS8 |
602141 |
HP fraction |
11q13 |
AR |
LS |
[vii] |
|
NDUFB3 |
603839 |
HP fraction |
2q31.3 |
AR |
Fatal Infantile Lactic Acidosis |
[viii] |
|
NDUFB9 |
601445 |
HP fraction |
8q24.13 |
AR |
Hypotonia, Lactic Acidosis |
[ix] |
|
NDUFB10 |
603843 |
HP fraction |
16p13.3 |
AR |
Lactic acidosis, cardiomyopathy |
[x] |
|
NDUFB11 |
300403 |
HP fraction |
Xp11.3 |
X |
Intrauterine growth restriction, Lactic acidosis |
[xi] |
|
NDUFV1 |
161015 |
FP fraction |
11q13 |
AR |
LS |
[xii] |
|
NDUFV2 |
600532 |
FP fraction |
18p11 |
AR |
Cardiomyopathy, hypotonia, encephalopathy |
[xiii] |
|
NDUFA1 |
300078 |
HP fraction |
Xq24 |
X |
LS Progressive neurodegenerative disorder |
[xiv] |
|
NDUFA2 |
602137 |
HP fraction |
5q31.2 |
AR |
LS |
[xv] |
|
NDUFA9 |
603834 |
HP fraction |
12p13.32 |
AR |
LS |
[xvi] |
|
NDUFA10 |
603835 |
HP fraction |
2q37.3 |
AR |
LS |
[xvii] |
|
NDUFA11 |
612638 |
IP fraction |
19p13.3 |
AR |
Fatal Infantile Lactic Acidosis Encephalocardiomyopathy |
[xviii] |
|
NDUFA12 |
609653 |
HP fraction |
12q22 |
AR |
LS |
[xix] |
|
NDUFA13 |
609435 |
HP fraction |
19p13.11 |
AR |
Encephalopathy, Optic atrophy |
[xx] |
| | | | | | | |
| | | | | | | |
| | | | | | | |
Complex II |
SDH-A |
600857 |
FP subunit |
5p15 |
AR |
LS |
[xxi] |
|
SDH-B |
185470 |
IP subunit |
1p36.1-p35 |
AD |
Phaeochromocytoma and paraganglioma |
[xxii] |
|
SDH-C |
602413 |
Membrane subunit |
1q21 |
AD |
Autosomal dominant paraganglioma type 3 |
[xxiii] |
|
SDH-D |
602690 |
Membrane subunit |
11q23 |
AD |
Autosomal dominant paraganglioma type 1, Pheochromocytoma |
[xxiv] |
| | | | | | | |
| | | | | | | |
| | | | | | | |
Complex III |
UQCRB |
191330 |
electron transfer |
8q22 |
AR |
Hypoglycemia, Lactic acidosis |
[xxv] |
|
UQCRQ |
612080 |
electron transfer |
5q31.1 |
AR |
Severe neurological phenotype |
[xxvi] |
| | | | | | | |
| | | | | | | |
| | | | | | | |
Complex IV |
COX6A1 |
602072 |
Cytochrome oxidase activity |
12q24.31 |
AR |
Charcot-Marie-Tooth disease |
[xxvii] |
|
COX6B1 |
124089 |
Cytochrome oxidase activity and assembly |
19q13.1 |
AR |
Encephalomyopathy |
[xxviii] |
|
COX7B |
300885 |
Cytochrome oxidase activity |
Xq21.1 |
X |
Microphthalmia with linear skin lesions |
[xxix] |
|
COX8A |
123870 |
Cytochrome oxidase activity |
11q13.1 |
AR |
LS |
[xxx] |
| | | | | | | |
| | | | | | | |
| | | | | | | |
Complex V |
ATP5E |
606153 |
ATPase activity |
20q13.3 |
AR |
Lactic acidosis, mental retardation, peripheral neuropathy |
[xxxi] |
|
ATP5A1 |
164360 |
ATPase activity |
18q21.1 |
AR |
Neonatal encephalopathy |
[xxxii] |
|
ATP8A2 |
605870 |
ATPase activity |
13q12.13 |
AR |
cerebellar ataxia, mental retardation |
[xxxiii] |
ABBREVIATIONS
AD: Autosomal Dominant; AR: Autosomal Recessive; FP: Flavoprotein; HP: Hydrophobic; IP: Iron-Protein; LS: Leigh syndrome; X: X-linked
REFERENCES
[i] Benit, P., Chretien, D., Kadhom, N., de Lonlay-Debeney, P., Cormier-Daire, V., Cabral, A., Peudenier, S., Rustin, P., Munnich, A., Rotig, A., 2001. Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. American Journal of Human Genetics 68, 1344-1352.
http://www.ncbi.nlm.nih.gov/pubmed/11349233
[ii] Loeffen, J., Elpeleg, O., Smeitink, J., Smeets, R., Stockler-Ipsiroglu, S., Mandel, H., Sengers, R., Trijbels, F., van den Heuvel, L., 2001. Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Annals of Neurology 49, 195-201.
http://www.ncbi.nlm.nih.gov/pubmed/11220739
[iii] Benit, P., Slama, A., Cartault, F., Giurgea, I., Chretien, D., Lebon, S., Marsac, C., Munnich, A., Rotig, A., Rustin, P., 2004. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. Journal of Medical Genetics 41, 14-17.
http://www.ncbi.nlm.nih.gov/pubmed/14729820
[iv] van den Heuvel, L., Ruitenbeek, W., Smeets, R., Gelman-Kohan, Z., Elpeleg, O., Loeffen, J., Trijbels, F., Mariman, E., de Bruijn, D., Smeitink, J., 1998. Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. American Journal of Human Genetics 62, 262-268.
http://www.ncbi.nlm.nih.gov/pubmed/9463323
[v] Kirby, D.M., Salemi, R., Sugiana, C., Ohtake, A., Parry, L., Bell, K.M., Kirk, E.P., Boneh, A., Taylor, R.W., Dahl, H.H., Ryan, M.T., Thorburn, D.R., 2004. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. The Journal of Clinical Investigation 114, 837-845.
http://www.ncbi.nlm.nih.gov/pubmed/15372108Spiegel, R., Shaag, A., Mandel, H., Reich, D., Penyakov, M., Hujeirat, Y., Saada, A., Elpeleg, O., Shalev, S.A., 2009. Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. European Journal of Human Genetics 17, 1200-1203.
http://www.ncbi.nlm.nih.gov/pubmed/19259137
[vi] Smeitink, J., van den Heuvel, L., 1999. Human mitochondrial complex I in health and disease. American Journal of Human Genetics 64, 1505-1510.
http://www.ncbi.nlm.nih.gov/pubmed/10330338
[vii] Loeffen, J., Smeitink, J., Triepels, R., Smeets, R., Schuelke, M., Sengers, R., Trijbels, F., Hamel, B., Mullaart, R., van den Heuvel, L., 1998. The first nuclear-encoded complex I mutation in a patient with Leigh Syndrome. Ibid. 63, 1598-1608.
http://www.ncbi.nlm.nih.gov/pubmed/9837812 Procaccio, V., Wallace, D.C., 2004. Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology 62, 1899-1901.
http://www.ncbi.nlm.nih.gov/pubmed/15159508
[viii] Calvo, S.E., Compton, A.G., Hershman, S.G., Lim, S.C., Lieber, D.S., Tucker, E.J., Laskowski, A., Garone, C., Liu, S., Jaffe, D.B., Christodoulou, J., Fletcher, J.M., Bruno, D.L., Goldblatt, J., Dimauro, S., Thorburn, D.R., Mootha, V.K., 2012. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Science Translational Medicine 4, 118ra110.
http://www.ncbi.nlm.nih.gov/pubmed/22277967
[ix] Haack, T.B., Madignier, F., Herzer, M., Lamantea, E., Danhauser, K., Invernizzi, F., Koch, J., Freitag, M., Drost, R., Hillier, I., Haberberger, B., Mayr, J.A., Ahting, U., Tiranti, V., Rotig, A., Iuso, A., Horvath, R., Tesarova, M., Baric, I., Uziel, G., Rolinski, B., Sperl, W., Meitinger, T., Zeviani, M., Freisinger, P., Prokisch, H., 2012. Mutation screening of 75 candidate genes in 152 complex I deficiency cases identifies pathogenic variants in 16 genes including NDUFB9. Journal of Medical Genetics 49, 83-89.
https://www.ncbi.nlm.nih.gov/pubmed/22200994
[x] Friederich, M.W., Erdogan, A.J., Coughlin, C.R., 2nd, Elos, M.T., Jiang, H., O'Rourke, C.P., Lovell, M.A., Wartchow, E., Gowan, K., Chatfield, K.C., Chick, W.S., Spector, E.B., Van Hove, J.L.K., Riemer, J., 2017. Mutations in the accessory subunit NDUFB10 result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly. Human Molecular Genetics 26, 702-716.
https://www.ncbi.nlm.nih.gov/pubmed/28040730
[xi] Kohda, M., Tokuzawa, Y., Kishita, Y., Nyuzuki, H., Moriyama, Y., Mizuno, Y., Hirata, T., Yatsuka, Y., Yamashita-Sugahara, Y., Nakachi, Y., Kato, H., Okuda, A., Tamaru, S., Borna, N.N., Banshoya, K., Aigaki, T., Sato-Miyata, Y., Ohnuma, K., Suzuki, T., Nagao, A., Maehata, H., Matsuda, F., Higasa, K., Nagasaki, M., Yasuda, J., Yamamoto, M., Fushimi, T., Shimura, M., Kaiho-Ichimoto, K., Harashima, H., Yamazaki, T., Mori, M., Murayama, K., Ohtake, A., Okazaki, Y., 2016. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS Genetics 12, e1005679.
https://www.ncbi.nlm.nih.gov/pubmed/26741492
[xii] Smeitink, J., van den Heuvel, L., 1999. Human mitochondrial complex I in health and disease. American Journal of Human Genetics 64, 1505-1510.
http://www.ncbi.nlm.nih.gov/pubmed/10330338
[xiii] Benit, P., Beugnot, R., Chretien, D., Giurgea, I., De Lonlay-Debeney, P., Issartel, J.P., Corral-Debrinski, M., Kerscher, S., Rustin, P., Rotig, A., Munnich, A., 2003. Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Human Mutation 21, 582-586.
http://www.ncbi.nlm.nih.gov/pubmed/12754703
[xiv] Fernandez-Moreira, D., Ugalde, C., Smeets, R., Rodenburg, R.J., Lopez-Laso, E., Ruiz-Falco, M.L., Briones, P., Martin, M.A., Smeitink, J.A., Arenas, J., 2007. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Annals of Neurology 61, 73-83.
http://www.ncbi.nlm.nih.gov/pubmed/17262856 Potluri, P., Davila, A., Ruiz-Pesini, E., Mishmar, D., O'Hearn, S., Hancock, S., Simon, M.C., Scheffler, I., Wallace, D.C., Procaccio, V., 2009. A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Molecular Genetics and Metabolism 96, 189-195.
http://www.ncbi.nlm.nih.gov/pubmed/19185523
[xv] Hoefs, S.J., Dieteren, C.E., Distelmaier, F., Janssen, R.J., Epplen, A., Swarts, H.G., Forkink, M., Rodenburg, R.J., Nijtmans, L.G., Willems, P.H., Smeitink, J.A., van den Heuvel, L.P., 2008. NDUFA2 complex I mutation leads to Leigh disease. American Journal of Human Genetics 82, 1306-1315.
http://www.ncbi.nlm.nih.gov/pubmed/18513682
[xvi] van den Bosch, B.J., Gerards, M., Sluiter, W., Stegmann, A.P., Jongen, E.L., Hellebrekers, D.M., Oegema, R., Lambrichs, E.H., Prokisch, H., Danhauser, K., Schoonderwoerd, K., de Coo, I.F., Smeets, H.J., 2012. Defective NDUFA9 as a novel cause of neonatally fatal complex I disease. Journal of Medical Genetics 49, 10-15.
https://www.ncbi.nlm.nih.gov/pubmed/22114105
[xvii] Hoefs, S.J., van Spronsen, F.J., Lenssen, E.W., Nijtmans, L.G., Rodenburg, R.J., Smeitink, J.A., van den Heuvel, L.P., 2011. NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease. European Journal of Human Genetics 19, 270-274.
http://www.ncbi.nlm.nih.gov/pubmed/21150889
[xviii] Berger, I., Hershkovitz, E., Shaag, A., Edvardson, S., Saada, A., Elpeleg, O., 2008. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Annals of Neurology 63, 405-408.
http://www.ncbi.nlm.nih.gov/pubmed/18306244
[xix] Ostergaard, E., Rodenburg, R.J., van den Brand, M., Thomsen, L.L., Duno, M., Batbayli, M., Wibrand, F., Nijtmans, L., 2011. Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome. Journal of Medical Genetics 48, 737-740.
https://www.ncbi.nlm.nih.gov/pubmed/21617257
[xx] Angebault, C., Charif, M., Guegen, N., Piro-Megy, C., Mousson de Camaret, B., Procaccio, V., Guichet, P.O., Hebrard, M., Manes, G., Leboucq, N., Rivier, F., Hamel, C.P., Lenaers, G., Roubertie, A., 2015. Mutation in NDUFA13/GRIM19 leads to early onset hypotonia, dyskinesia and sensorial deficiencies, and mitochondrial complex I instability. Human Molecular Genetics 24, 3948-3955.
https://www.ncbi.nlm.nih.gov/pubmed/25901006
[xxi] Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., Rotig, A., 1995. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genetics 11, 144-149.
http://www.ncbi.nlm.nih.gov/pubmed/7550341
[xxii] Astuti, D., Latif, F., Dallol, A., Dahia, P.L., Douglas, F., George, E., Skoldberg, F., Husebye, E.S., Eng, C., Maher, E.R., 2001. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. American Journal of Human Genetics 69, 49-54.
http://www.ncbi.nlm.nih.gov/pubmed/11404820
[xxiii] Niemann, S., Muller, U., 2000. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genetics 26, 268-270.
http://www.ncbi.nlm.nih.gov/pubmed/11062460
[xxiv] Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., Myers, E.N., Richard, C.W., Cornelisse, C.J., Devilee, P., Devlin, B., 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848-851.
http://www.ncbi.nlm.nih.gov/pubmed/10657297
[xxv] Haut, S., Brivet, M., Touati, G., Rustin, P., Lebon, S., Garcia-Cazorla, A., Saudubray, J.M., Boutron, A., Legrand, A., Slama, A., 2003. A deletion in the human QP-C gene causes a complex III deficiency resulting in hypoglycaemia and lactic acidosis. Human Genetics 113, 118-122.
http://www.ncbi.nlm.nih.gov/pubmed/12709789
[xxvi] Barel, O., Shorer, Z., Flusser, H., Ofir, R., Narkis, G., Finer, G., Shalev, H., Nasasra, A., Saada, A., Birk, O.S., 2008. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. American Journal of Human Genetics 82, 1211-1216.
http://www.ncbi.nlm.nih.gov/pubmed/18439546
[xxvii] Tamiya, G., Makino, S., Hayashi, M., Abe, A., Numakura, C., Ueki, M., Tanaka, A., Ito, C., Toshimori, K., Ogawa, N., Terashima, T., Maegawa, H., Yanagisawa, D., Tooyama, I., Tada, M., Onodera, O., Hayasaka, K., 2014. A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease. American Journal of Human Genetics 95, 294-300.
https://www.ncbi.nlm.nih.gov/pubmed/25152455
[xxviii] Massa, V., Fernandez-Vizarra, E., Alshahwan, S., Bakhsh, E., Goffrini, P., Ferrero, I., Mereghetti, P., D'Adamo, P., Gasparini, P., Zeviani, M., 2008. Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. American Journal of Human Genetics 82, 1281-1289.
http://www.ncbi.nlm.nih.gov/pubmed/18499082
[xxix] Indrieri, A., van Rahden, V.A., Tiranti, V., Morleo, M., Iaconis, D., Tammaro, R., D'Amato, I., Conte, I., Maystadt, I., Demuth, S., Zvulunov, A., Kutsche, K., Zeviani, M., Franco, B., 2012. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. American Journal of Human Genetics 91, 942-949.
https://www.ncbi.nlm.nih.gov/pubmed/23122588
[xxx] Hallmann, K., Kudin, A.P., Zsurka, G., Kornblum, C., Reimann, J., Stuve, B., Waltz, S., Hattingen, E., Thiele, H., Nurnberg, P., Rub, C., Voos, W., Kopatz, J., Neumann, H., Kunz, W.S., 2016. Loss of the smallest subunit of cytochrome c oxidase,COX8A, causes Leigh-like syndrome and epilepsy. Brain 139, 338-345.
https://www.ncbi.nlm.nih.gov/pubmed/26685157
[xxxi] Mayr, J.A., Havlickova, V., Zimmermann, F., Magler, I., Kaplanova, V., Jesina, P., Pecinova, A., Nuskova, H., Koch, J., Sperl, W., Houstek, J., 2010. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Human Molecular Genetics 19, 3430-3439.
http://www.ncbi.nlm.nih.gov/pubmed/20566710
[xxxii] Jonckheere, A.I., Renkema, G.H., Bras, M., van den Heuvel, L.P., Hoischen, A., Gilissen, C., Nabuurs, S.B., Huynen, M.A., de Vries, M.C., Smeitink, J.A., Rodenburg, R.J., 2013. A complex V ATP5A1 defect causes fatal neonatal mitochondrial encephalopathy. Brain 136, 1544-1554.
https://www.ncbi.nlm.nih.gov/pubmed/23599390
[xxxiii] Onat, O.E., Gulsuner, S., Bilguvar, K., Nazli Basak, A., Topaloglu, H., Tan, M., Tan, U., Gunel, M., Ozcelik, T., 2013. Missense mutation in the ATPase, aminophospholipid transporter protein ATP8A2 is associated with cerebellar atrophy and quadrupedal locomotion. European Journal of Human Genetics 21, 281-285.
https://www.ncbi.nlm.nih.gov/pubmed/22892528